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New Internal Model Average Consensus Estimators with Light Commu-
nication Load
Juwon Lee and Juhoon Back*

Abstract: The dynamic average consensus problem for a group of agents is considered. Each agent in the group is
supposed to estimate the average of inputs applied to all agents and the estimation should be done in a distributed
way. By reinterpreting the proportional integral type estimator, a new structure for the average estimator which
can embed the internal model of inputs is proposed and conditions which result in the zero estimation error in the
steady state are derived. We present constructive design procedures for the cases of constant inputs and time-varying
inputs employing the root locus for the former and LQR-based design for the latter. The theory is validated through
numerical simulations.
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1. INTRODUCTION

Thanks to remarkable achievements in various fields of
engineering and science including communication, com-
putation, electronics, it is now possible to see in our daily
life that multiple agents, often called multi-agent systems,
exchange information in real time, make decisions au-
tonomously, and act cooperatively. One of fundamental is-
sues related to multi-agent systems is the consensus prob-
lem in which agents try to reach an agreement by exchang-
ing information through communication network, and a
vast amount of results can be found in the literature, see
the early research articles [1–3], books [4–6], and surveys
[7, 8].

In this paper, we consider the dynamic average con-
sensus problem for a group of agents. Suppose that each
agent in the group is endowed with an input and we would
like to estimate the average of inputs applied to all the
agents. The inputs can be constants or time-varying, and
the agents are allowed to communicate with neighboring
agents so that the estimation is done in a distributed way.
It is noted that the problem is somewhat different from
the consensus or synchronization problem [7] where the
objective is to synchronize the states or outputs of agents
and the synchronized trajectory depends on the initial con-
ditions of agents (and sometimes those of controllers as
well), while in dynamic average consensus problem the
agreement should be made on the estimate of the average
of inputs so that the estimate should be independent of
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the initial state of dynamic system (filters or controllers)
running on agents. Applications of the problem include
sensor fusion [9, 10], distributed estimation [11, 12], eco-
nomic dispatch [13, 14], resource allocation [15], etc.

A number of results on dynamic average consensus
problems are available in the literature. In [16], the au-
thors presented a solution for the case of constant inputs
exploiting the fact that sum of all states remains constant
in a group of single integrators with diffusive coupling
(and under undirected network topology), and proposed a
solution for the case where the inputs are polynomial-in-
time signals. The internal model based estimator is pre-
sented in [17] and nonlinear protocols under time-varying
network topology are proposed in [18]. Discrete-time es-
timation algorithms are presented in [19, 20] and time-
varying network as well as privacy of agents is considered
in [21]. Recently, a tutorial considering applications has
been published [22].

The most relevant work to ours is the internal model
based estimator [17] which is a generalization of propor-
tional integral (PI) type estimator given in [23]. Although
the internal model of inputs [24], e.g., the order of poly-
nomial or the frequency of sinusoids, should be known
completely, it is the main advantage that the estimation er-
ror asymptotically converges to zero. Moreover, the result
is essentially global in the sense that the bounds of inputs
and/or their time derivatives are not required, and the ini-
tial condition of estimator can be freely chosen. Despite
these advantages, it is the main drawback that estimator
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design is not fully constructive since the simultaneous sta-
bilization problem (the problem of finding one stabilizing
controller for several systems) involved in the design was
not solved completely in [17].

In this paper, we reinterpret the PI-type estimator of
[23] and propose a new structure for dynamic average es-
timator. Compared to [17, 23], the proposed structure is
simpler and asks for less communication among agents,
which is highly desirable in practice. In addition, the sim-
pler structure enables us to develop a constructive design
procedure for the estimator. Based on the new estima-
tor structure, two solutions are presented. One is for the
constant input case, and it is designed employing the root
locus under the assumption that an upper bound of the
largest eigenvalue of the Laplacian is known. The other is
for the time-varying input case, which adopts the LQR de-
sign assuming that a lower bound of the smallest nonzero
eigenvalue of the Laplacian is known. A rigorous stability
analysis for the closed-loop system is given and numerical
simulations are conducted to validate the theory.

The remainder of this paper is organized as follows: In
Section 2, a new structure for dynamic average estima-
tor is proposed and a solution to constant input case is
presented. In Section 3, we consider the case with time-
varying inputs and develop a constructive design proce-
dure. After presenting numerical simulation results in
Section 4, we give some conclusion in Section 5.

Notation: Let R denote the set of real numbers and C
denote the set of complex numbers. C<0 is the set of com-
plex numbers with negative real part. 0k stands for the
zero vector in Rk, 1k ∈ Rk a vector with all components
being 1. Ik represents the identity matrix in Rk×k. Con-
catenation of two vectors or scalars a and b is denoted by
[a;b], i.e., [a;b] := [a⊤,b⊤]⊤. Given n scalars a1, . . . ,an,
diag{a1, . . . ,an} denotes the diagonal matrix whose diago-
nal elements are a1, . . . ,an, while all the other elements are
zero. The block diagonal matrix for n matrices A1, . . . ,An,
denoted by diag{A1, . . . ,An}, is similarly defined. Given a
function x(t), x(s) denotes the Laplace transform of x(t).
We also express x(s) = L{x(t)}. Laplace transform of a
vector valued function is similarly defined. For a sym-
metric matrix M ∈ Rn×n, λi(M), i = 1, . . . ,n, denote the
eigenvalues of M arranged as λ1(M)≤ ·· · ≤ λn(M).

2. NEW AVERAGE ESTIMATOR FOR
CONSTANT INPUTS

Consider a team of N agents and suppose that the ith
agent in the team, i = 1, . . . ,N, can access or measure a
signal ui(t) ∈ R. In this section, we assume that ui(t) is
constant, ui(t) = ūi,∀t, with ūi ∈ R.

The problem under consideration is to compute or esti-
mate the average of ui’s, defined by uav =

1
N ∑N

i=1 ui, in a
distributed manner. That is to say, the average is not com-
puted in a centralized way, i.e., a unit collects all ui’s and
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Fig. 1. Proposed structure for the agent i.

compute the average. Instead, each agent runs an estima-
tor (or a filter) which produces an estimate of uav and this
is done by exchanging filtered signals of ui’s, denoted by
vi’s, with its neighbors. In what follows, the estimate of
uav by agent i is denoted by ûi

av.
The communication among agents is modeled by a

graph G and it is assumed that the graph is undirected and
connected. Let A =

[
ai j

]
∈ RN×N be the adjacency matrix

associated to G where ai j represents the weight of inter-
connection and defined by ai j = a ji > 0 if agents i and j
can communicate each other, ai j = a ji = 0 if they can’t,
and aii = 0, i = 1, . . . ,N. The Laplacian of the graph G,
denoted by L, is an N ×N matrix whose components are
defined by li j = −ai j if i ̸= j and lii = ∑N

j=1 ai j. Ni indi-
cates the set of neighbors of the i-th agent.

Now we present a distributed estimator which can
asymptotically compute uav. Fig. 1 describes the proposed
estimator for each agent. The estimator of agent i is a feed-
back system composed of two filters p(s) and q(s), p(s)
in the feedforward path and q(s) in the feedback path. It
takes the signal ui as input and produces ûi

av which is an
estimate of uav. The signals vi’s, which are filtered signals
of ûi

av’s, are exchanged among agents so that the signal
ω i = Liv, where v(t) =

[
v1(t); · · · ;vN(t)

]
and Li is the ith

row vector of the Laplacian L, is fed back to the agent i’s
estimator. It is compared with ui and the difference ui−ω i

is passed to p(s).
In what follows, we use vectors u(t), ûav(t), and ω(t),

which collect information from N agents, e.g., u(t) =[
u1(t); · · · ;uN(t)

]
. The vectors ûav(t) and ω(t) are defined

similarly.
The filters p(s) and q(s) are given by

p(s) =
bp,n−1sn−1 + · · ·+bp,0

sn +ap,n−1sn−1 + · · ·+ap,0
,

q(s) =
bq,m−1sm−1 + · · ·+bq,0

sm +aq,m−1sm−1 + · · ·+aq,0
, (1)

where n, m are positive integers and the coefficients of
p(s), q(s) are design parameters.

Assume that the numerator and denominator of p(s) are
coprime and assume the same for q(s). Throughout the
paper, we assume coprimeness of the numerator and de-
nominator of a transfer function unless stated otherwise.
In the state space, the proposed estimator can be realized
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Fig. 2. Proposed structure for dynamic average estimator
for all agent. The Laplacian L explains how the sig-
nals v1, . . . ,vN , generated by filters, are exchanged
among agents.
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Fig. 3. Dynamic average estimator proposed in [17, 23].
Two blocks kIL indicates that both ûav and the out-
put of q̄(s) should be exchanged through commu-
nication.

as

ξ̇ i = Aξ ξ i +Bξ
(
ui −ω i) , ûi

av =Cξ ξ i,

η̇ i = Aη η i +Bη ûi
av, vi =Cη η i,

ω i = ∑
j∈Ni

ai j(vi − v j)
(2)

where ξ i ∈ Rn, η i ∈ Rm, and the matrices are defined by

Aξ =

[
0n−1 In−1

−ap,0 −ap,1 · · ·−ap,n−1

]
, Bξ =

[
0n−1

1

]
,

Cξ =
[
bp,0 bp,1 · · · bp,n−1

]
,

Aη =

[
0m−1 Im−1

−aq,0 −aq,1 · · ·−aq,m−1

]
, Bη =

[
0m−1

1

]
,

Cη =
[
bq,0 bq,1 · · · bq,m−1

]
.

The proposed structure is a simpler implementation of
the internal model based estimator introduced in [17, 23].
To obtain this, we first interpret the estimator as a feed-
back system composed of p(s) and Q̄(s) = kPL+k2

I L2q̄(s)
as shown in Fig. 3. (p(s) and q̄(s) correspond to h(s) and
g(s) in [17], respectively.) Then, it is observed that the
convergence proof of [17] essentially requires three prop-
erties 1) p(0) = 1, 2) the transfer function q̄(s) has at least
one pole at the origin, and 3) the closed loop system is sta-
ble. From this observation, we replace Q̄(s) in Fig. 3 by
Lq(s) to have a simpler structure shown in Fig. 2.

It is emphasized that the communication load is reduced
in the proposed structure since only the outputs of q(s)
are exchanged, while not only the outputs of p(s) but also
those of q̄(s) should be exchanged in the previous one. In

addition, as can be seen shortly, the proposed structure en-
ables us to develop a constructive design procedure which
has not been provided in [17, 23].

Remark 1: The communication load of the proposed
estimator is lightest among existing average estimators in-
cluding [16,18,21] because agents exchange only the out-
puts of the filter q(s). In addition, the proposed estimator
is robust in the sense that the initial conditions of the fil-
ters can be set arbitrarily, while those of [16, 18] require
fixed initial conditions.

Now we derive the condition under which the average
can be estimated asymptotically. Towards this, we first
rewrite the dynamics of estimator (2) as

ûi
av(s) = p(s)(ui(s)−ω i(s)) = p(s)(ui(s)−Liv(s)),

vi(s) = q(s)ûi
av(s), (3)

where Li is the ith row of L, and the relation ω i(s) =
∑ j∈Ni

ai j(vi(s)− v j(s)) = Liv(s) is used. We then rewrite
the N equations of (3) compactly as

ûav(s) = p(s)(u(s)−Lv(s)),

v(s) = q(s)ûav(s),

from which we have

ûav(s) =
(
IN +Lp(s)q(s)

)−1 p(s)u(s) =: T (s)u(s).
(4)

Theorem 1: Let ū∈RN be a constant vector and u(t)=
ū,∀t ≥ 0. Suppose the estimator (2) is designed such that
conditions C1, C2, and C3 shown below are satisfied.

C1) p(s) is stable and p(0) = 1.
C2) q(s) contains at least one pole at the origin, and all

the other poles belong to C<0.
C3) All the roots of 1+ p(s)q(s)λi(L) = 0, i = 2, · · · ,N,

belong to C<0.

Then, it holds that

lim
t→∞

ûav(t) =
1
N

1N1⊤N ū.

Proof: Let λ1, . . . ,λN be the eigenvalues of L, and V be
the orthonormal matrix such that V⊤LV = ∆, where ∆ =
diag{0,λ2, . . . ,λN}. Then, from (4), one has

T (s) =VV⊤T (s)VV⊤ =V
[

p(s) 0⊤N−1
0N−1 T̄ (s)

]
V⊤,

where

T̄ (s) = diag
{

p(s)
1+ p(s)q(s)λ2

, . . . ,
p(s)

1+ p(s)q(s)λN

}
.

From conditions C1 and C3, it follows that T (s) is sta-
ble, and thus the signal ûav(t) has a steady state value



www.manaraa.com

2588 Juwon Lee and Juhoon Back

ûav,ss = limt→∞ ûav(t). Note that since T (s) is stable, ûav,ss

is independent of the initial conditions of ξ i’s and η i’s.
Recalling that the Laplacian L has a zero eigenvalue and
the associated eigenvector is of the form c1N with c ̸= 0,
we decompose V as V =

[
1√
N

1N W
]
. Applying the final

value theorem, one has

ûav,ss = lim
s→0

sT (s)
ū
s

= T (0)ū

=
[

1√
N

1N W
][p(0) 0⊤N−1

0N−1 T̄ (0)

][ 1√
N

1⊤N
W⊤

]
ū

=
1
N

1N1⊤N p(0)ū+WT̄ (0)W⊤ū.

From conditions C1 and C2, it follows that p(s)
1+p(s)q(s)λi

, i =
2, . . . ,N, has at least one zero at the origin, so that

lim
s→0

p(s)
1+ p(s)q(s)λi

= 0, i = 2, . . . ,N,

which results in that W⊤T̄ (0)Wū = 0. Finally, the condi-
tion C1 (p(0) = 1) ensures that ûav,ss =

1
N 1N1⊤

N ū, which
completes the proof. □

The novelty of the proposed structure lies in the fact
that one can systematically find p(s) and q(s) such that
the conditions in Theorem 1 are satisfied. A procedure to
design the distributed estimator is given as follows.

Design Procedure for Constant Inputs
Step 1: Choose a positive integer n. Take stable polyno-

mials ap(s) = sn +ap,n−1sn−1 + · · ·+ap,0 and b̄p(s) =
sn−1 + b̄p,n−2sn−2 + · · ·+ b̄p,0. Take bp,n−1 such that
bp,n−1b̄p,0 = ap,0. Let p(s) = bp(s)

ap(s)
=

bp,n−1b̄p(s)
ap(s)

.
Step 2: Choose a positive integer m. Take stable poly-

nomials āq(s) = sm−1 + āq,m−2sm−2 + · · ·+ āq,0 and
b̄q(s) = sm−1 + b̄q,m−2sm−2 + · · ·+ b̄q,0. Let q(s) =
bq,m−1b̄q(s)

sāq(s)
where bq,m−1 > 0 is chosen at a step 3.

Step 3: Consider the root locus of 1+ kL(s) = 0 where
L(s) = b̄p(s)b̄q(s)

ap(s)sāq(s)
. Find k∗ > 0 such that, for each 0 <

k < k∗, all the roots of 1+ kL(s) = 0 lie in C<0. Take
bq,m−1 ≤ k∗/(bp,n−1λN).

Step 1 guarantees that the condition C1 of Theorem 1
is satisfied. Step 2 with any positive bq,m−1 ensures that
the condition C2 is fulfilled. Finally, the constant bq,m−1

chosen at Step 3 guarantees that the condition C3 holds
true. To see this, we first note that L(s) has all zeros in C<0

and all poles of L(s), except the one at the origin, belong
to C<0. Following the standard root locus argument, one
can see that there exists k∗ > 0 such that, for each 0 < k <
k∗, all the roots of 1+ kL(s) = 0 lie in C<0. If we take
bq,m−1 ≤ k∗/(bp,n−1λN), then it follows that all the roots
of 1+ p(s)q(s)λ = 0, 0 < λ ≤ λN belong to C<0, which
implies that the condition C3 is satisfied.

3. NEW AVERAGE ESTIMATOR FOR
TIME-VARYING INPUTS

In this section, we consider the case where the input
vector u(t) is time-varying. In particular, we assume that
ui(t) applied to agent i can be modeled as

χ̇ i = Sχ i, χ i(0) = χ i
0,

ui = Rχ i, (5)

where χ i ∈ Rl is the state vector, S and R are known ma-
trices with appropriate dimensions, and χ i

0 is the unknown
initial condition for χ i. Note that the model (5) covers
various types of signals such as constant, polynomial, si-
nusoid, exponential, etc., and the initial condition χ i

0 de-
termines the amplitude, slope, phase, etc. Let ui(s) be the
Laplace transform of ui(t) given by

ui(s) =
bi
u(s)

au(s)
= R(sIl −S)−1χ i

0. (6)

The proposed average estimator is given by

ξ̇ i = Aξ ξ i +Bξ
(
ui −ω i) ,

η̇ i = Aη η i +Bη ûi
av,

ω i = ∑
j∈Ni

ai j(vi − v j), vi = Kξ ξ i +Kη η i,

ûi
av =Cξ ξ i, (7)

where ξ i ∈ Rn, η i ∈ Rm are the filter states, and Aξ , Bξ ,
Cξ , Aη , and Bη are matrices which have the same struc-
tures as those given in (2) and the associated coefficients
are design parameters to be determined. The vectors Kξ
and Kη are to be determined as well. The structure of the
proposed estimator is shown Fig. 4.

For simplicity, define ψ i =
[
ξ i;η i

]
, and rewrite the av-

erage estimator (7) as

ψ̇ i = Aψ ψ i +Bψ(ui −ω i),

ω i = ∑
j∈Ni

ai j(Kψ ψ i −Kψ ψ j),

ûi
av =Cψ ψ i, (8)

where

Aψ =

[
Aξ 0n×m

BηCξ Aη

]
, Bψ =

[
Bξ
0m

]
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Fig. 4. Proposed dynamic average estimator for time-
varying inputs.
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Cψ =
[
Cξ 0⊤m

]
, Kψ =

[
Kξ Kη

]
.

Basically, the proposed estimator shares the same idea
as the one proposed in Section 2, but the signals to be ex-
changed among agents are different; for the constant input
case, agents exchange the output signal vi only (see Fig.
2), while for the time-varying case, agents exchange the
scalar signal Kψ ψ i which is a linear function of the inter-
nal states of estimator. It is emphasized that the proposed
structure enables us to provide a constructive design pro-
cedure, which is the main advantage of the proposed solu-
tion over the previous result given in [17].

Theorem 2: Let u(t) ∈ RN be the input vector ap-
plied to a group of N agents whose ith component ui(t)
is modeled as (5), and consider the distributed estima-
tor (7) with n ≥ l and m ≥ l. Let ap(s) = det(sIn −Aξ ),
aq(s) = det(sIm −Aη), and au(s) = det(sIl −S). Then, the
estimate ûav(t) from the estimator (7) ensures that

lim
t→∞

(
ûav(t)−

1
N

1N1⊤N u(t)
)
= 0 (9)

if all conditions C1, C2, and C3 shown below are satisfied.

C1) ap(s) is Hurwitz, and au(s) divides bp(s)−ap(s).
C2) aq(s) = au(s)γ(s) for some stable polynomial γ(s).
C3) Aψ −λi(L)Bψ Kψ , i = 2, . . . ,N, are Hurwitz.

Proof: Let λ1, . . . ,λN be the eigenvalues of L. As
stated in the proof for Theorem 1, λ1 = 0, and there
exists an orthonormal matrix V such that V⊤LV =
∆ = diag{0,λ2, . . . ,λN}. We decompose V as V =[
V1 · · · VN

]
with V1 =

1√
N

1N . For simplicity, let W =[
V2 · · · VN

]
.

Now, we define ψ =
[
ψ1; · · · ;ψN

]
and collect all the

dynamics (8) with i = 1, . . . ,N to have

ψ̇ =
(
IN ⊗Aψ −L⊗Bψ Kψ

)
ψ +

(
IN ⊗Bψ

)
u,

ûav = (IN ⊗Cψ)ψ. (10)

Let n̄ = n+m and define ψ̄ = (V⊤⊗ In̄)ψ . In ψ̄ coordi-
nates, we rewrite (10) as

˙̄ψ =(V⊤⊗ In̄)
(
IN ⊗Aψ −L⊗Bψ Kψ

)
(V ⊗ In̄)ψ̄

+(V⊤⊗ In̄)
(
IN ⊗Bψ

)
u

=
(
IN ⊗Aψ −∆⊗Bψ Kψ

)
ψ̄ +

(
V⊤⊗Bψ

)
u (11)

from which we have

ψ̄(s) =diag{Tav(s), T̄ (s)}
(
ψ̄(0)+

(
V⊤⊗Bψ

)
u(s)

)
,

where

Tav(s) = (sIn̄ −Aψ)
−1

T̄ (s) = diag
{
(sIn̄ −Aψ +λ2Bψ Kψ)

−1,

. . . ,(sIn̄ −Aψ +λNBψ Kψ)
−1}.

Then, we obtain

ûav(s) = ûav,0(s)+ ûav,u(s), (12)

where

ûav,0(s) = (V ⊗Cψ)diag{Tav(s), T̄ (s)}ψ̄(0)

ûav,u(s) = (V ⊗Cψ)diag{Tav(s), T̄ (s)}
(
V⊤⊗Bψ

)
u(s).

In order to find out the steady state behavior of ûav(t),
we investigate the signals ûav,0(t) and ûav,u(t), separately.

Consider the signal ûav,0(t) and compute

ûav,0(t) =L−1{(V ⊗Cψ)diag{Tav(s), T̄ (s)}ψ̄(0)
}

=L−1
{(

1√
N

1N ⊗Cψ

)[
Tav(s) 0

]
ψ̄(0)

}
+L−1{(W ⊗Cψ)

[
0 T̄ (s)

]
ψ̄(0)

}
.

Noting that(
1√
N

1N ⊗Cψ

)[
Tav(s) 0

]
ψ̄(0)

=

(
1
N

1N1⊤N ⊗Cξ (sIn −Aξ )
−1
)[

ξ 1(0); . . . ;ξ N(0)
]
,

it follows from the stability of Aξ (condition C1)
and Aψ − λiBψ Kψ , i = 2, . . . ,N, (condition C3) that
limt→∞ ûav,0(t) = 0.

Since ûav,0(t) decays to zero, the steady state behavior
of ûav(t) is determined by that of ûav,u(t). Towards this,
we decompose ûav,u(s) as follows

ûav,u(s) = (V ⊗Cψ)diag{Tav(s), T̄ (s)}(V⊤⊗Bψ)u(s)

=
N

∑
i=1

ViV⊤
i Tψ,i(s)u(s), (13)

where Tψ,i(s) =Cψ(sIn̄ −Aψ +λiBψ Kψ)
−1Bψ .

We claim that for i = 1, . . . ,N, it holds that

Tψ,i(s) =
aq(s)bp,i(s)

aψ,i(s)
, (14)

where

aψ,i(s) = det(sIn̄ −Aψ +λiBψ Kψ)

bp,i(s) = det
[

sIn −Aξ +λiBξ Kξ −Bξ
Cξ 0

]
.

To prove the claim, it is sufficient to prove that the numer-
ator of Tψ,i(s) can be factored into aq(s)bp,i(s). In fact,
one can directly obtain this result from the identity

det

sIn −Aξ +λiBξ Kξ λiBξ Kη −Bξ
−BηCξ sIm −Aη 0m

Cξ 0⊤m 0


= det

[
sIn −Aξ +λiBξ Kξ −Bξ

Cξ 0

]
det(sIm −Aη).
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From (13), (14), and (6), one has

ûav,u(s) =
N

∑
i=1

(
ViV⊤

i
aq(s)bp,i(s)

aψ,i(s)

)
1

au(s)
bu(s), (15)

where bu(s) =
[
b1
u(s); · · · ;bN

u (s)
]
. Since au(s) divides

aq(s) (condition C2), there exists a polynomial γ(s) such
that aq(s) = au(s)γ(s), which yields

ûav,u(s) =
N

∑
i=1

(
ViV⊤

i
γ(s)bp,i(s)

aψ,i(s)

)
bu(s).

Moreover, by the condition C3, it holds that aψ,i(s) is Hur-
witz for all i = 2, . . . ,N, which results in that

L−1

{
N

∑
i=2

ViV⊤
i Tψ,i(s)u(s)

}
→ 0 as t → 0. (16)

Meanwhile, from the condition C1, there exists a poly-
nomial γ̄(s) such that bp(s) = ap(s)+ γ̄(s)au(s). Noting
that bp,1(s) = bp(s) and aψ,1(s) = ap(s)aq(s), we have, for
the term with i = 1 in (13),

Tψ,1(s)u(s) =
aq(s)bp(s)
ap(s)aq(s)

1
au(s)

bu(s)

=
ap(s)+ γ̄(s)au(s)

ap(s)
1

au(s)
bu(s)

= u(s)+
γ̄(s)
ap(s)

bu(s).

Applying this result and the properties limt→ ûav,0(t) = 0
and (16), one has

lim
t→∞

(ûav(t)−1Nuav(t))

= lim
t→∞

L−1
{(

V1V⊤
1 Tψ,1(s)

)
u(s)− 1

N
1N1⊤N u(s)

}
= lim

t→∞
L−1

{
1
N

1N1⊤N
γ̄(s)
ap(s)

bu(s)
}

= 0

which completes the proof. □

Remark 2: The proposed average estimator has n+m
states and if we have N inputs, there are N(n+m) states
in the closed-loop system. We note that the closed-loop
system (10) has N(n+m)− l stable eigenvalues (by con-
ditions C1 and C3) and the rest l eigenvalues are those of
S. This means that the signals in the closed-loop system
can oscillate or even diverge depending on the model of
inputs.

Now, we provide a constructive design procedure guar-
anteeing three conditions of Theorem 2.

Design Procedure for Time-Varying Inputs

Step 1: From the model of input signal, choose n and m
(the orders of ap(s) and aq(s), respectively) such that
n ≥ l and m ≥ l (l is the order of au(s)).

Step 2: Choose a stable monic polynomial ap(s) with or-
der n ≥ l.

Step 3: Choose an (n− l)th order polynomial γ̄(s) of the
form γ̄(s) = −(sn−l + γ̄n−l−1sn−l−1 + · · ·+ γ̄0), and
take bp(s) = ap(s)+au(s)γ̄(s).

Step 4: Choose an (m− l)th order polynomial γ(s) such
that all the roots of γ(s) are different from those of
ap(s), and take aq(s) = au(s)γ(s).

Step 5: Let P > 0 be a solution to the Riccati equation
given by

A⊤
ψ P+PAψ + In̄ −PBψ B⊤

ψ P = 0. (17)

Let δ be such that δ ≤ λ2(L). Choose the feedback
gain Kψ = max{1,δ−1}BT

ψ P.

Remark 3: We emphasize that the proposed filter ex-
plicitly employ the information of input signals ui’s. In
fact, the internal model of inputs, i.e., S, is used to con-
struct the polynomial au(s) and this polynomial is used to
construct the matrix Aη (condition C2) and the dynamics
of ξ , i.e., Aξ , Bξ , and Cξ (condition C1).

Remark 4: We note that Steps 1∼4 ensure that
(Aψ ,Bψ) is stabilizable, which can be proved by em-
ploying the PBH test [25]. Indeed, first note that (Aξ ,Bξ )
and (Aη ,Bη) are controllable and let λ be an eigenvalue
of Aη such that λ ∈C≥0 where C≥0 =C\C<0. Then, one
has

rank
[

Aξ −λ In 0n0⊤
m Bξ

BηCξ Aη −λ Im 0m

]
= rank

[
Aξ −λ In 0n0⊤m Bξ

0n0⊤
n Aη −λ Im −BηCξ (Aξ −λ In)

−1Bξ

]
= n+ rank

[
Aη −λ Im Bη

bp(λ )
ap(λ )

]
= n+m,

where the last equality follows from the facts that (Aη ,Bη)
is controllable and bp(λ ) = ap(λ ) ̸= 0. Thus, the assertion
is proved.

Remark 5: The stabilizability ensured by Steps 1∼4
guarantee that there exist a unique solution P, which is
symmetric and positive definite, to the Riccati equation
(17), and the condition C3 in Theorem 2 is satisfied by the
gain matrix Kψ determined using the solution P; see [26]
for details.

4. NUMERICAL EXAMPLE

In this section, we explain the design of estimators de-
veloped in previous sections and provide simulation re-
sults. We consider a group of four agents whose net-
work topology is shown in Fig. 5. The eigenvalues of
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Fig. 5. Communication topology among four agents.

the Laplacian matrix L are λ1 = 0, λ2=2.82, λ3 = 4.81,
and λ4 = 12.36.

4.1. Dynamic average consensus for constant inputs
Consider the case where the inputs to the agents are

constants. Let the input vector be given by u(t) = ū =[
10;4;2;8

]
.

According to Step 1 of the design procedure in Sec-
tion 2, we choose ap,1 = 16, ap,0 = 60 to obtain ap(s) =
s2 + 16s+ 60. And we take bp(s) = 2s+ 60 because we
choose b̄p,0 = 30, bp,1 = 2. From Steps 2 and 3, we take
āq(s) = s2 + 35s+ 300, and b̄q(s) = s2 + 29s+ 204. Fi-
nally, from the root locus of 1+ k (s+30)(s2+29s+204)

(s2+16s+60)s(s2+35s+300) =

0 , we choose k∗ = 50 and take bq,2 = 2 < k∗
bp,1λ4

. Thus, the
resulting transfer functions p(s) and q(s) are given by

p(s) =
2s+60

s2 +16s+60
, q(s) =

2(s2 +29s+204)
s(s2 +35s+300)

.

The simulation result in Fig. 6 shows that the agent’s
estimates converge to the true average for constant inputs.

4.2. Dynamic average consensus for time-varying in-
puts

Consider the case where the inputs of four agents
are all sinusoids expressed by ui(t) = Mi sin(ωt +
ϕ i), i = 1, . . . ,4, where ω = 2π

5 , M =
[
M1; · · · ;M4

]
=[

4.5;3.5;2.5;1.5
]
, and ϕ =

[
ϕ 1; · · · ;ϕ 4

]
= [0.5π; 0;

1.15π; 0.6π]. The trajectories of ui(t) and uav(t) are
shown in Fig. 7. For these inputs, we assume that we
know the internal model such that au(s) = s2 +ω2.

We follow the design procedure in Section 3. At Step 1,
we take n = 2, m = 3. At Step 2, we choose ap(s) =
s2 + 15s + 50. At Step 3, we take γ̄(s) = −1 to have
bp(s) = ap(s)− au(s) = 15s+(50−ω2). At Step 4, we
take γ(s) = s+ 1 so that aq(s) = s3 + s2 +ω2s+ω2. Fi-
nally, we solve the equation (17) for P and take Kψ =
δ−1B⊤

ψ P =
[
0.28 0.42 0.09 0.45 0.4

]
by Step 5.

The simulation result in Fig. 8 shows that the proposed
estimator successfully achieves dynamic average consen-
sus for sinusoidal inputs.

5. CONCLUSION

By reinterpreting the PI-type average estimator and
its generalizations, new conditions of dynamic average
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Fig. 6. Average estimate ûi
av(t) and the average of u(t) for
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Fig. 7. The trajectories of ui(t) and their average uav for
the sinusoidal inputs.
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consensus are derived and a simpler structure for aver-
age estimator is proposed. The proposed structure ad-
mits a constructive design procedure and it requires the
range of eigenvalues of the associated Laplacian matrix.
Future research topics include dynamic average consen-
sus on discrete-time signals and application to distributed
Kalman filtering problem, and results on these topics will
be reported in forthcoming publications.
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